
NEUGEN OO Review

Marc Paterno
Mark Fischler

Panagiotis Spentzouris

May 30, 2001

Abstract

This document contains a summary of our findings from the
NEUGEN OO review, held on 17 April, 2001.

1 Introduction

This document contains a summary of our findings from the review of
the NEUGEN OO package. This is, in general, not a detailed code re-
view, although some of the reviewers have included detailed analysis
of parts of the system. Instead, this document is mostly a high-level
overview. It is our aim to provide recommendations for high-level deci-
sions, because of the early state of the software.

The appendix provides some detailed analysis from one of the au-
thors.

2 Purpose of NEUGEN OO

The purpose of NEUGEN OO1 is to serve as a replacement for and ex-
tension to the FORTRAN package NEUGEN. This FORTRAN package is
15 years old, and has been used by several experiments. It has been
developed and maintained by a mid-sized group, and has experienced
much growth (in scope of functionality and bulk of code) since it was
first created.

Originally written to generate neutrino interactions for studies of
backgrounds to proton decay, the existing FORTRAN had new features
added as new physics became interesting. Primarily, these new fea-
tures consisted of new physics processes to be simulated, and exten-
sion of the calculations to higher energy scales.

1A description of the NEUGEN OO package may be found on the web, at
http://www.hep.umn.edu/∼gallag/neugen.

1

http://www.hep.umn.edu/~gallag/neugen

While the existing FORTRAN code has clearly been of great use,
several reasons for re-writing the package, using an object-oriented
design executed in C++, were presented. These reasons were:

• Difficulty of maintenance of the existing FORTRAN code. Over
the lifetime of the code, and as a result of modification by many
authors, the code has become quite complex and difficult to main-
tain.

• Difficulty of extension of the code. It is important to be able to
add new physics processes without “breaking” existing processes.
Looser coupling between different physics processes is required;
“dangerous” couplings must be avoided. It is currently very dif-
ficult to modify an existing process, or add a new one, without
subtly (or perhaps grossly) affecting another process, because of
the degree of interaction between the simulations of the existing
physics processes.

3 Requirements

In this section, we list physics requirements (the physics scope of the
product), functional requirements (what the code must do) and oper-
ational requirements (how it must do it). These requirements were all
mentioned during the talk; we have tried not to add any of our own prej-
udices to this list. We follow each section with some brief comments on
these requirements.

3.1 Physics Scope

Neutrino physics experiments cover a large range of energies, and thus
different regimes of neutrino interactions. For Soudan 2, the energy
scale is O(1) GeV; the relevant interactions are ν-nucleus. For NuTev,
the energy scale is O(100) GeV; the relevant interactions are ν-parton.
MINOS lies in between; the physics is less well understood, especially
in the transition region between the two regimes. There is more than
one physics model to choose from for dealing with the transition and
low energy regions. This is also the case for the hadronization process.
There is uncertainty not just in the model parameters, but in the choice
of model. There is uncertainty not just in the parameters, but in the
choice of model.

In addition, nuclear effects, even in the high-energy regime, are “lay-
ered” upon the free parton interactions — this introduces one of the
“dangerous couplings” noted earlier, which reflect on the complexity of
the design of the “Summing” algorithms. In addition, there is more
than one option (methodology) for the design of such an algorithm.

2

3.2 Functional Requirements

The main functions for NEUGEN OO are:

• Generation of events, representing the interaction of neutrinos
with a given “target”.

• Calculation of cross sections for the interaction of neutrinos with
a given “target”.

“Target” here implies any object with which neutrinos interact, i.e a
parton, a nucleon, a nucleus, an electron, etc.

The system must be easy to use for each of these tasks.
The next most common use of the package will be to test the faithful-

ness of the simulation. This is more complicated, and will necessarily
require more expertise on the part of the user.

Finally, it must be possible to analyze uncertainties in the calculated
quantities. This use requires the most sophistication on the part of the
user.

For all these tasks, user must have control over the parameters that
affect physics output. In addition, the data sets against which the
package will be tested have to be availlable to the users as part of the
package, together with concrete examples on their use.

3.2.1 Comments on the Functional Requirements

We heartily endorse the requirement of ease-of-use (and wish the au-
thors of more packages agreed). We suggest that this ease of use should
extend not only to running an already-built executable, but should ex-
tend to building and configuring the program as well.

We suspect that the task of analyzing uncertainties in the calculated
quantities will require considerable thought during the design process.
It will be important to determine what sort of uncertainty analysis will
be supported, and what degree of user configurability is required. Re-
lated issues extend all the way from choosing the specific quantities for
which uncertainties shall be calculable, to deciding whether to support
“frequentist” uncertainty calculations, “Bayesian” uncertainty calcula-
tions, or to allow the user to make his own choice.

Is it necessary to track the user-configurable parameters of the sim-
ulation? The answer to this question make all the difference when eval-
uating solutions for user configuration. Automatic tracking of these
parameters is possible, but such a requirement necessarily adds to the
complexity of the process of configuring the system. Choosing not to
use automatic tracking of parameters adds to the complexity of manag-
ing non-trivial generated event samples. While we do not recommend a
specific choice, we do recommend that both options be considered.

3

3.2.2 Documentation of Requirements

We recommend the creation of a requirements document. It is useful to
have an up-to-date requirements document, so that at all times a clear
reminder of the project priorities is available. The document should
be revised as often as necessary to reflect changes in understanding of
the project. The intent of such a document is not to limit innovation; it
is to support necessary change, by helping to assure the project goals
are always clearly defined. This becomes even more important as the
number of individuals collaborating on the project grows.

3.3 Operational Requirements

It is important to be able to add a new algorithm in a new run of the
program, without recompilation. This flexibility is to allow the user to
switch between the many possible physics models for neutrino inter-
actions. A user must be able to easily add his own physics models,
without disrupting existing models.

Speed of execution is not currently considered a critical feature.
This is, in part, because it is expected that any reasonable implemen-
tation will be sufficiently fast.

Correctness is, of course, crucial.
It must be easy to interpret the program output, and easy to access

underlying physics.
The package must be flexible: it should not be MINOS-specific. It

should be able to generate cross-sections, as well as events.
It must be possible to run the generator in “stand-alone” mode.

There must be no requirement for a detector simulation, and a detector
simulation will not be part of the package.

The physics output of the program must be compared with data
to determine the accuracy of the simulation, as well as to determine
optimal default settings of parameters.

The software must be well documented. This includes document-
ing not only the operation of the program, but also documenting the
verification of the physics output of the program.

3.3.1 Comments on the Operational Requirements

The importance of flexibility in adding new algorithms suggests that
a solution based on run-time polymorphism (an “object-oriented” de-
sign), rather than one based on compile-time polymorphism (a “generic
programming” design, based on templates) will be most appropriate.
This may have an adverse effect on the speed of execution, but with
reasonable design effort effort this should not become a problem. This
requirement for flexibility seems to be one of the most important to the

4

design of the system. It will be important to keep it in mind when eval-
uating choices for specific design decisions, in each part of the code.

We agree with the philosophy behind the second point. Optimization
for speed should be done only after a correctly functioning program ex-
ists, and should be guided by measuring (profiling) executables which
perform realistic tasks.

Two of the operational requirements are unclear in meaning. To aid
in the design process, we suggest that these requirements be specified
more clearly; otherwise, it will be impossible to tell if something impor-
tant is being missed. The following are the requirements we found to
be unclear:

1. It must be easy to access underlying physics.

2. The package must not be MINOS-specific.

We recommend they be clarified, in the requirements document men-
tioned in § 3.2.2.

We recommend that the requirements document include the insis-
tence that associated with any module implementing any physics con-
cept, there be documentation including the equations and/or processes
that this module purports to use. We recommend this be in the form of
text with equations in properly typeset form (probably this forces it to
be snips of LATEX) and the requirement must be that the typical MINOS
physicist must be able to understand that document to know what the
module is doing, and if versed in computing, should be able to check
personally that the module is doing what is claimed.

We agree with the author on the importance of quality documenta-
tion. We believe that it is important to be specific about the require-
ments for comparison of physics output with data for each algorithm. It
seems to us that this could extremely difficult, especially for the lower-
level algorithms in the system, which may not produce directly visible
results. Perhaps it is worthwhile to have several different, but clearly
defined, documentation requirements, one for each type of algorithm in
the system. These requirements should also bee listed in the require-
ments document.

If you are serious about making testing against data part of the
mantra of augmenting this package, then we suggest you can increase
the odds of people adhering to that philosophy by providing a standard-
ized form for how such a test must look. A well-thought-out recipe for
what constitutes a test, and a uniform structure to the test process,
will make the non-physics part of the burden as palatable as possible.

Of course, the original designers must set the right example by al-
ways adhering to this mantra themselves! And somebody has to have
the right and the gumption to say “this cross section algorithm can-
not yet be part of NEUGEN OO, until an adequate test against data (or
other test) can be devised and is implemented.”

5

3.3.2 Comments on Extensibility and Flexibility

Much stress was placed on the importance of extensibility and flexibil-
ity for NEUGEN OO. These are the operational requirements that are
most expensive, in terms of design and coding effort. We believe that
it is important to understand these requirements clearly, and to keep
them in mind, to assure the success of the project — to prevent wast-
ing scarce human resources on less important features, and to prevent
missing a crucial feature. To help in understanding the magnitude of
the task imposed by these requirements, we have several questions.

In what dimension (or dimensions) is extensibility required? What
features can be clearly identified as not requiring extensibility? A clear
statement of goals on this issue is critical to understanding how much
designer effort is required to achieve the goal.

Is the user community supportive of (or does enough of the commu-
nity even know about) this project? Perhaps it is sensible to collaborate
with others who are doing similar work now — or even with people
in other experiments, who aren’t doing anything now, but who have a
(perhaps undiscovered) need for the same product.

What has to be done to make sure that modifications to one part
of the system don’t destroy some feature of the solution required by
another part, or the system as a whole? There are different solutions
to how to stitch together solutions to subproblems; these need to be
in place, and the class design has to make sure this is handled auto-
matically. To understand this issues, a clear statement of the purpose
of each subsystem is necessary. Within each subsystem, a clear state-
ment of the purpose of each class is necessary. Our experience with
the review of many systems is that if it is difficult to express the pur-
pose of a given subsystem or class, then the design of that part of the
system is probably insufficiently focused, which will lead to problems
when extension of the system is required.

The requirements document proposed in § 3.2.2 will be useful in
improving the focus of subsystems and classes.

3.4 Weakness of the FORTRAN

In devising the requirements for NEUGEN OO, we believe it is impor-
tant to consider the weaknesses (and strengths) of the previous FOR-
TRAN code. For example, one of the weaknesses pointed out during
the review talk was that it was too hard to add new summing algo-
rithms, because each new one needs new types of information. Cross
section algorithms are less “changeable”, because what they do is more
standardized. What about the list of arguments for cross section cal-
culations, which must specify the initial and final states?

What were the other major failures or problems with the existing
FORTRAN? What can the new design do that the old FORTRAN can

6

not do? Conversely, what things could the old design do that the new
design need not support? One item of the latter category mentioned
during the review talk (and subsequently questioned) is support for
proton decay. The requirements document should address these issues
directly; the wisdom accumulated from use of the existing code is very
valuable, and should not be lost.

3.5 Use Cases

We believe that, in a small project, the development of formal use case
diagrams is of limited utility. We believe a clear requirements document
better meets the need for which the use case diagrams were intended.

However, use-case examples serve as both a tool for making certain
the design is on-target for how the package is to be used, and later as
pedagogical aids for physicists using the package. As such, collection
of these examples is a useful part of the design process.

It is clear that most of the design effort (thus far) has gone into the
simpler Evaluate Cross Section use case. For example, it seems that
the XSecAlgorithm interface does not support what would be needed
for Generate Event.

3.5.1 Evaluate Cross Section

This is the simpler of the two use cases. The main difficulty we had
with this use case is that we are unclear about how one specifies a
process for which the cross section is to be evaluated. We suggest that
this needs further clarification.

For example, will the cross-section query allow inclusive clasifica-
tions (neutral current, charged current, elastic, etc), semi-inclusive, or
complete determination of the final state (practicaly imposible, if the
hadronization process is considered)? How much flexibility will be al-
lowed in the definition of the kinematic variables of the final state?

3.5.2 Generate Event

This is the more complicated use case, which in turn uses Evalute Cross
Section.

The basic element of Evaluate Cross Section is the Step. Each Step
gets the Event, modifies it, and passes it on. This work is done by a set
of “algorithms”. Are these the same algorithms as XSecAlgorithm? Are
they different ones? Do these algorithms need to generate matrix ele-
ments? Slide 30 talks about this. It seems that there may be an effort
here to unify, under a single interface, things that are unrelated. For
example, target selection and hadronization are clearly distinct opera-
tions. Unifying these (as well as others) under a single interface would
be useful if some client class is going to use them polymorphically. But

7

http://www.hep.umn.edu/~gallag/neugen/talks/Apr01/sld030.htm

what client will not need to distinguish between an object that does
target selection and one that does hadronization? It was unclear to us
if we have missed a fundamental feature of the design, or if this is a
case of needless abstraction.

It is clear that this use case drives most of the requirements (both
functional and operational) of the system. We suggest these require-
ments be determined in greater detail before significant details of the
design are implemented.

3.5.3 Differential cross sections and applying algorithms

You have given a lot of thought to getting total cross sections but now
it is necessary to flesh out the processes used in generating decays,
in case new design issues arise there. For example, the entire issue
of clashes between two interactions, and summation issues, may be
different and one should know at an early stage.

4 External Infrastructure

It is important, early in the project, to determine what environments
(operating systems and compilers) are to be supported. Clearly it must
be the needs of the users that drive these decisions. We caution against
the support of compilers that are of pre-Standard vintage, because
such compilers generally lack the ability to support modern C++ us-
age.

It is also important to determine what external products may be
relied upon. For example, is it allowable to rely upon any database
product (several high-quality free ones are available)2? Upon a com-
mercial database product? ROOT? ZOOM? Other FNAL software, such
as RCP?

The requirements document recommended in § 3.2.2 should discuss
these requirements and constraints.

5 Suggested Process

In this section, we recommend a process for the continuation of the
NEUGEN OO project.

First, we reiterate our suggestion (see § 3.2.2) for a requirements
document. This document is the most import “design document” for
the project.

Second, we suggest that a prototype implementation of the system
should be produced at the earliest possible date. It is not important

2The two most widely used examples are probably PostgreSQL and MySQL.

8

http://root.cern.ch
http://www.fnal.gov/docs/working-groups/fpcltf/fpcltf.html
http://cdspecialproj.fnal.gov/d0/rcp
http://postgresql.readysetnet.com
http://www.mysql.com

that this prototype support all important features. It is important that
it support a few features, at least partially, and that it can serve as a
testing-ground for design ideas.

Third, we recommend that design meeting (smaller in scope, and
faster in response time, than this review) be used frequently to help
keep the project on track (that is, keep it adhering to the requirements
document).

If a formal software process is desired, we do not recommend any of
the “heavyweight” processes (such as formal UML, or RUP). These pro-
cesses typically require too much overhead (diagramming, document-
ing, etc.) to be supportable over the long run. Instead, we suggest a
model more like Extreme Programming (XP) as being appropriate for a
project of this size.3

6 Classes

This section is a collection of notes on the details of several of the
classes presented during the review talk. We believe the points made
here are valuable, but also recognize that the details of the classes
that form the system will be subject to considerable change during the
prototyping process.

6.1 Framework

The class Framework only deals with “generic” (not the template meta-
programming sense) algorithms. Should it know there are different
types of algorithms? It is not clear if the level of polymorphism proposed
here is useful.

How should the behavior be divided between the SumAlgorithm and
the Framework classes?

How does one make sure that we don’t have a misconfigured? For
example, one will want to make sure one is not doing the same “step”
twice — except when it makes sense. For which steps does this make
sense? If possible, the design should prevent nonsensical configura-
tions at compile time; failing that, at link time; and under all circum-
stances, at run time.4

How often is a new type of interaction added? There are not a huge
list, but the ability to add new ones is at least of modest importance.
It is unclear if the interactions fall into few enough categories that they
may all be known to the system, or if the system must be open to
extension to handle unforseen categories of interactions.

3The requirements document we recommend is really just a collection of stories in the
XP jargon.

4This is consistent with the design of C++ as a strongly-typed language, in which it
deemed advantageous to catch errors as early as possible.

9

http://www.extremeprogramming.org

It is unclear whether the Framework should know about some ba-
sic physics, thus helping to make sure that unreasonable things are
not done, or if it should know nothing, so that adding new types of
interactions is simple. Clarification of the competing requirements is a
precondition to making the correct design choice.

6.2 Algorithm

Each Algorithm has a name, a version number, and some number
bunch of parameters, which have to be sufficient to capture the state of
the algorithm represented by the instance of the class. Algorithm has
nothing algorithm-like about it; it seems to be more of an artifact for
persistency.

6.3 XSecAlgorithm

XSecAlgorithms are used to calculate cross sections. What is the in-
terface that supports this calculation? This seems to be the crucial
feature of this class, which led to much of the discussion regarding the
cross section queries.

It will be important to analyze the requirements for differential cross
section calculations, to determine what similarities and differences
there are between the interfaces for total and differential cross section
algorithms.

Can one XSecAlgorithm call another? We suspect this will be rel-
evant both in the design of the interface, and in determining how to
handle the interdependency issue raised in § 2.

How are the physics effects factorized? Do “nuclear effects” alter
the XSecAlgorithms? Are they part of the calculation, or are they added
later? How about hadronization? For example, in the case of deep
inelastic scattering, is the neutrino-parton interaction a separate cal-
culation from the electroweak radiative corrections, the above two sep-
arate from the hadronization process, and all of the above from nuclear
effects? Although this model looks like a reasonable way to implement
a cross-section algorithm, it breaks in cases like NLO QCD charm pro-
duction, where the differential cross-section is given by a convolution
of fragmentation and DIS. How will differences like that implemented
in the design?

6.4 SumAlgorithm

Each SumAlgorithm adds up contributions from one or more XSecAl-
gorithms. The SumAlgorithm does a great deal of work — it has to
understand how to talk to the various XSecAlgorithms. This means the
interface of XSecAlgorithm has to support all the features needed to do

10

this for every different summing algorithm. Does each new summing
algorithm add a new way to have to query the XSecAlgorithm? How
often do new summing algorithms appear, as compared to new cross
section algorithms? Should the design be optimized for ease of addition
of new XSecAlgorithms, or for adding new SumAlgorithms?

Should a SumAlgorithm be calling an XSecAlgorithm, or should it
just get passed results from the XSecAlgorithm?

7 Miscellaneous Questions and Comments

This section contains a collection of otherwise unsorted questions or
comments. Many are items which arose in discussions during the re-
view meeting, and are recorded here for completeness, and in case they
are significant for further discussion.

1. Do the “initial state” and “final state” objects represent a range
of inputs? So far, this has not been needed, because the design
only deals with total cross sections, rather than differential cross
sections. The differential croess section problem is not yet solved.

2. Should NEUGEN OO use SIunits? This seems like an excellent
choice, unless it is precluded by a need to support older compilers,
or some other technical reason prevents its use.

3. How does IO work? What gets to be persistent, and how? What
requirements can be placed on user code to support persistence?

4. Is one event always within one medium? What sort of media
should we be able to deal with? How do the media get into the
system? What geometric ideas does the system have to under-
stand? Can we make it need to understand no such things? What
processes are not point-like, and thus require geometric informa-
tion?

A Concepts Related to interaction types, over-
laps, clashes

This section has been written by Mark Fischler.
As I see it, here is a problem:
The various routines which apply an interaction and give a con-

tribution to the cross-section are not independent of one another. The
approach suggested by the code given at the review has the major draw-
back that higher-level classes need to know about all the types of inter-
actions (as evidenced by the symptom of that enum and case statement).
This in itself makes addition of a new interaction type tricky. Worse,

11

http://www.fnal.gov/docs/working-groups/fpcltf/Pkg/SIunits/doc/0SIunits.html.gz

if the summation routines start needing to deal with overlaps between
different types of interactions, then changes will start to require looking
at O(N2) places because of N2 potential overlaps.

The goal in resolving this would be to:
Allow for creation of additional interaction types by creation and

instantiation of new classes derived from a base InteractionType class.
This should not involve any alterations of higher classes.

Define properties regarding these interface classes, such as whether
a clash of two classes of the same type in the same context is permis-
sible.

For the cases where it is necessary to define what to do when two
types of interactions are present define some object encapsulating that.
Code would instantiate an object derived from that Overlap base class
to provide the method to apply when this happens.

When a solution to this has been designed and coded, before it
is used extensively, I strongly suggest you let someone like Paterno,
Kowalkowski, or in a pinch myself review just that one narrow issue.

To do this, I propose a structure something like the following:
There is a class InteractionType — each type of interaction, for ex-

ample DeepInelasticScattering, inherits from InteractionType. A very
simple registry mechanism is set up to provide for each class derived
from InteractionType to have a unique id (which for these examples
I will assume should be an int). I give a sample of how this could
be done below; superior experts may suggest improvements on this
scheme but it works.

It turns out that InteractionType is exactly at the level in the hierar-
chy where you have XSecAlgorithm, so from now on, I will assume that
it is named XSecAlgorithm. Specific XSecAlgorithms, which are partic-
ular cases of an interaction type, then inherit from XSecAlgorithms, for
example:

class DIS : public XSecAlgorithm { /* ... */ };
class mySpecificDIS : public DIS { /* ... */ };
class alternativeDIS : public DIS { /* ... */ };
class QEL : public XSecAlgorithm { /* ... */ };
class mySpecificQEL : public QEL { /* ... */ };
// ...

XSecAlgorithm also contains these virtual methods:

class XSecAlgorithm {
// ...
virtual bool isOverlapAllowed {return false;}
virtual XSec overlap (const XSecQuery & q,

const XSec & xA,

12

const XSec & xB);
};

and of course the methods you already have:

class XSecAlgorithm {
// ...
virtual XSec getXSec (XSecQuery q);
// ... etc.
};

Normally, overlaps of two of the same type of interaction are ver-
boten: The main framework can query each existing interaction type
class for id, and if two match, it should call isOverlapAllowed()
which if nothing else is done will return false. The bool method is-
OverlapAllowed() can be overridden in a derived class to allow over-
laps.

So how does usage look? Well, declaring a new XSecAlgorithm was
fine before and works just about the same way, except that now it
inherits from the appropriate XSecAlgorithm instead of setting its int-
Type data member. It still the same has implementations of all the real
physics methods.

Creating a whole new XSecAlgorithm, which previously was awkward
in that the main framework had to change to know about the new type,
is now straightforward. You follow this trivial boilerplate:

In the header:

class XYZ : public XSecAlgorithm (
static int id;

public:
int myId() const {return id;}
// ... plus all the methods you normally need

}

and in the source file:

int XYZ::id = XSecAlgorithmRegistry::id();

I suggest that XSecAlgorithm ought to contain, besides the virtual
bool isOverlappedAllowed() , a virtual method

virtual XSec overlap (const XSecQuery & q,
const XSec & xA,
const XSec & xB) const;

This would be called if two interactions of the same type are defined,
and if isOverlapAllowed() is overridden to return true for each of
these. What this does is it gives you a way to resolve that situation

13

by inspecting the XSecs returned by each and forming from them the
actual XSec to use. (I would augment XSec to include some sort of
confidence or weight number to help this overlap routine decide who to
pay the most attention to.)

This takes care of (in the class design sense of avoiding changes
propagating to affect classes they shouldn’t; not in the physics thought
sense!) the case of multiple XSec algorithms of the same type. It is
also plausible to extend the technique to take care of cases where type
ABC and type XYZ affect one another, again without having to change
the main code each time such a cross-effect is added. Thus potentially
your summation routines can look a lot cleaner.

OK, here is how the code can look. This compiles and correctly
does what is needed: The myId() method returns the id assigned to
the class XYZ, which is unique with regard to all other classes derived
from XSecALgorithm. Again, I don’t claim this can’t be improved, but it
proves that you can avoid the major drawback that higher-level classes
need to know about each type of interaction.

A.1 Headers

// XSecAlgorithmRegistry.h
class XSecAlgorithmRegistry {

public:
static int id() {return max++;}
private:
static int max;

};

// XSecAlgorithm.h
class XSecAlgorithm {

public:
XSecAlgorithm(); // As per your code
// more methods ... As per your code
virtual int myId() const {return id;}
virtual bool isOverlapAllowed() const

{return false;}
virtual XSec overlap (const XSecQuery & q,

const XSec & xA,
const XSec & xB) const ;

private:
static int id;

}

// DIS.h
class DIS : public XSecAlgorithm {
public:

14

XSecAlgorithm(); // As per your code
// more methods ... As per your code
virtual int myId() const {return id;}
// And ***optionally***
virtual bool isOverlapAllowed() const {return true;}
virtual XSec overlap (const XSecQuery & q,

const XSec & xA,
const XSec & xB) const ;

private:
static int id;

}

// QEL.h
class QEL : public XSecAlgorithm {
public:

XSecAlgorithm(); // As per your code
// more methods ... As per your code
virtual int myId() const {return id;}
// Note that isOverlapAllowed() and overlap() can be
// omitted if not relevant

private:
static int id;

}

A.2 Source Files

// XSecAlgorithm.cc
// Your methods already present, plus...
int XSecAlgrorithm::id = XSecAlgorithmRegistry::id();
XSec XSecAlgorithm::overlap (const XSecQuery & q,

const XSec & xA,
const XSec & xB) const {

// default algorithm, if overlap is permitted, yet no
// specific overlap method was provided, is very simple,
// like...
if (xZ.weight() > xB.weight()) {

return xA;
} else {

return xB;
}

}

// DIS.cc
// Your methods already present, plus...
int DIS::id = XSecAlgorithmRegistry::id();
virtual XSec overlap(const XSecQuery & q,

15

const XSec & xA,
const XSec & xB) const {

XSec answer;
// insert real overlap physics here to compute answer!
return answer;

}

// QEL.cc
// Your methods already present, plus...
int QEL::id = XSecAlgorithmRegistry::id();

16

	Introduction
	Purpose of NEUGEN OO
	Requirements
	Physics Scope
	Functional Requirements
	Comments on the Functional Requirements
	Documentation of Requirements

	Operational Requirements
	Comments on the Operational Requirements
	Comments on Extensibility and Flexibility

	Weakness of the FORTRAN
	Use Cases
	Evaluate Cross Section
	Generate Event
	Differential cross sections and applying algorithms

	External Infrastructure
	Suggested Process
	Classes
	Framework
	Algorithm
	XSecAlgorithm
	SumAlgorithm

	Miscellaneous Questions and Comments
	Concepts Related to interaction types, overlaps, clashes
	Headers
	Source Files

